Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wen-Hai Wang,^a Xiao-Yu Su,^a Zhi-Hua Mao,^b Jing-Song You^a* and Ru-Gang Xie^a*

^aDepartment of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and ^bCentre for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: schemorg@mail.sc.cninfo.net

Key indicators

Single-crystal X-ray study T = 290 KMean σ (C–C) = 0.006 Å R factor = 0.043 wR factor = 0.115 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexakis(1-methyl-1*H*-imidazole- κN^3)nickel(II) dichloride dihydrate

The title complex, $[Ni(C_4H_6N_2)_6]Cl_2\cdot 2H_2O$, is a mononuclear complex in which the Ni^{II} ion, lying on a centre of inversion, is coordinated by six 1-methylimidazole ligands that define an octahedral geometry.

Received 30 January 2006 Accepted 31 January 2006

Comment

The use of organic ligands and suitable metal salts to construct supramolecular architectures has attracted considerable interest because of their potential applications as functional materials (Tong *et al.*, 1999; Kitagawa *et al.*, 2004). Several complexes containing 1-methylimidazole have been prepared (Liu *et al.*, 2005), as 1-methylimidazole is a good ligand for a range of metals. We report here the crystal structure of the title complex, (I), as a continuation of our studies in this field.

The molecular structure of the cation in (I) is shown in Fig. 1. Each Ni atom, lying on a centre of inversion, displays a slightly distorted octahedral coordination defined by six 1-methylimidazole ligands that define an N₆ donor set. The Ni—N bond lengths are in the range 2.115 (3)–2.160 (3) Å (Table 1) and agree well with other Ni^{II} complexes described in the literature (*e.g.* Gao *et al.*, 2004). Interestingly, two chloride anions and two water molecules associate to form a ring *via* $O-H\cdots$ Cl hydrogen bonds, as shown in Fig. 2 and detailed in Table 2.

Experimental

Nickel(II) chloride hexahydrate (1 mmol, 0.24 g) and 1-methylimidazole (6 mmol, 0.49 g) were mixed in chloroform (15 ml) and the mixture was stirred for 5 h at room temperature. After filtration, the solid was dissolved in methanol (8 ml). Blue crystals suitable for X-ray analysis were obtained by slow evaporation of this solution over a period of 6 d.

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering. Unlabelled atoms are related to labelled atoms by the symmetry operator (-x, -y, -z).

Crystal data

[Ni(C₄H₆N₂)₆]Cl₂·2H₂O $M_r = 658.29$ Monoclinic, P_{2_1}/n a = 8.065 (4) Å b = 13.238 (5) Å c = 15.029 (7) Å $\beta = 98.07$ (4)° V = 1588.7 (12) Å³ Z = 2

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 2860 measured reflections 2714 independent reflections 1829 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.012$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ S = 1.022714 reflections 194 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	2.126 (3)	Ni1-N5	2.115 (3)
Ni1-N3	2.160 (3)		
N1-Ni1-N3	88.57 (11)	N5-Ni1-N1 ⁱ	87.93 (11)
N1-Ni1-N3 ⁱ	91.43 (11)	N5-Ni1-N3	87.23 (10)
N5-Ni1-N1	92.07 (11)	$N5-Ni1-N3^{i}$	92.77 (10)

Symmetry code: (i) -x, -y, -z.

 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 27 reflections $\theta = 4.5-7.4^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 290 (2) K Block, blue $0.25 \times 0.25 \times 0.23 \text{ mm}$

 $\begin{array}{l} \theta_{\max} = 25.0^{\circ} \\ h = -8 \rightarrow 9 \\ k = 0 \rightarrow 15 \\ l = -9 \rightarrow 17 \\ 3 \text{ standard reflections} \\ \text{every 300 reflections} \\ \text{intensity decay: } 1.0\% \end{array}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.061P)^2 \\ &+ 0.0104P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.35 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.39 \text{ e } \text{ Å}^{-3} \end{split}$$

Figure 2

The packing in (I), viewed approximately down the a axis. Dashed lines indicate hydrogen bonds but H atoms have been omitted for clarity.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$OW-H1W\cdots Cl1$ $OW-H2W\cdots Cl1^{ii}$	0.92 0.89	2.29 2.35	3.187 (3) 3.205 (3)	166 162

Symmetry code: (ii) -x, -y + 1, -z.

The O-bound H atoms were located in a difference Fourier map and fixed at those sites with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$ (see Table 2 for distances). The remaining H atoms were placed in calculated positions and refined in the riding-model approximation, with C-H = 0.93 (aromatic H) and 0.96 Å (methyl H), and with $U_{\rm iso}({\rm H}) =$ $1.2U_{\rm eq}({\rm aromatic C})$ and $1.5U_{\rm eq}({\rm methyl C})$.

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *MERCURY* (Version 1.2; Bruno *et al.*, 2002); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (grant No. 20472057) and the SRFDP of China (grant No. 20040610011).

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389–397. Farrugia, L. J. (1997). *J. Appl. Cryst.* 30, 565.

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). *DIFRAC*. American Crystallographic Association, Pittsburgh meeting. Abstract PA104.

Gao, S., Liu, J.-W., Dong, Y., Huo, L.-H. & Zhao, H. (2004). Acta Cryst. E60, m778–m780.

- Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–1570.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tong, M. L., Chen, X. X., Ye, B. H. & Ji, L. N. (1999). Angew. Chem. Int. Ed. 38, 2237–2240.